NEXT GENERATION TURBOMACHINERY

• • •

The information in this brochure is "For Reference Only" and is subject to change without notice. Certified performance data and dimensions shall be available upon request.

Headquarters	Hactory									
Add. 39, Techno 4-ro, Yuseong-gu, Daejeon, Republic of Korea, 307 P.O 34014	Add. 192, Osongsaengmyeong 9-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea P.O 28220									
裔 Tel. 82-42-932-9982	窗 Tel. 82-43-900-9982									
Overseas Corporation TNE Global Inc. Add. 500-3055 Saint-Martin West Laval, QC, H7T 0J3, Canada Tel. +1-450-902-4995 Mail. info@tne4global.com										
Quality Management System ISO 9001 ISO 14001	 Core Certificates : UL, CSA, CE Package Certificates : UL, CSA, CE Master Control Panel Certificates : UL, CSA, CE 									

AIR-BEARING HIGH-SPEED TURBO BLOWER

AIR-BEARING HIGH-SPEED TURBO BLOWER TNE TECHNOLOGY

BE SMALL THINK BIG

01/02

Eco-friendly energy savings and recovery solutions: Oil-free air bearing high-speed turbo technology

• • • Business Area

ГП UП2

• • •

Core

New Energy

(Hydrogen Economy)

Hydrogen fuel cell electric vehicle

Hydrogen power

generation

Design, production, and distribution of turbo technology

...

TNE provides comprehensive energy savings and new renewable energy solutions using professional high-speed turbo technology derived from aerospace industry

TNE is committed to providing compact, affordable, robust, environmentally friendly, and energy efficient gear-less turbo blowers for energy savings in various industry. TNE is preparing for the future eco-friendly and renewable energy era through the development of various innovative products and technologies such as hydrogen fuel cell air compressors, refrigerant-free air cycle turbo heat-pump etc.

With the reliable innovative products and value engineering services, TNE is continually innovating and striving for the next generation of happiness and prosperity by conserving global resources and protecting the environment.

Patented air bearings 01 /magnetic bearing Technology High Efficiency airend compressor/turbine High-speed robust rotor design 04 High Speed PMSM/ VFD

• • •

Parts

AIR-BEARING HIGH-SPEED TURBO BLOWER

TNE PRODUCTS

High efficiency with a wide range of operations

 Single/dual or vane/vaneless diffuser combination according to operation conditions

Engineered outdoor enclosure near the application

Available for patented circulating system protecting electrical parts under H2S gas

 Closed circulation operation (Nitrogen circulation application)

· Comply with IP54 and IP56

standard ratings

AIR-BEARING HIGH-SPEED TURBO BLOWER TNE PRODUCTS

Standard Package Patented dust-tight air cooled sound enclosure

HIGH-SPEED TURBO BLOWER

- ☑ Patented air-cooling systems with the closed-air inlet to the blower core

- I Options for IP54 or equivalent grade enclosure for dust protection
- and outdoor installation

TNE Air-Bearing High Speed Turbo Blower

- Food and beverage wash and drying
- Metal mill process
- · Green house heating and snow removal Nitrogen Circulation
- Semi-conductor and LED processing
- versatile state-of-the-art technology is everywhere!

Robust and Reliable Air Foil Bearing

AIR-BEARING

- Improved reliability with patented designs for mass production and simple mechanical assembly
- Sturdy design for frequent start and stop operation
- Q Longer life spans with contactless, gearless, and vibration-free operation
- ☑ Operation at zero discharge pressure with improved load capacity and stability
- Bearing module inspection at the component level for high level of quality control

Air Foil Journal Bearing

* Innovative bearing designs are patented in the US.

Air Foil Thrust Bearing

* Innovative bearing designs are patented in the US

• • • Application

Various industry worldwide

- · Fine bubble or coarse bubble aeration
- Activated sludge, MBR/MBBR
- · Deep Aeration
- Grit Chamber Aeration
- Filter Backwash

- · Petrochemical pellet, cement powder
- Powder and tablet in pharmaceutical industry
- Sugar, flour, grain and molt in food industry
- Lime in mining industry
- Twine and dyeing process in textile industry

Blower for outdoor installation

• • •

- I Total air-cooled system: oil-free and lubricant-free operation
- ☑ Single control of flow from air inlet filter → improved reliability and easy maintenance

- · Gas Collector/ Booster
- Fish farm aeration
- Dust collection system

AIR-BEARING HIGH-SPEED TURBO BLOWER TNE PRODUCTS 07 / 08

• • •

TNE Product Lineup

HIGH SPEED TURBO BLOWER

- Quick and easy troubleshooting
- No more complicated control electronics
- Quick and easy troubleshooting with "Swap and Fix" modular components

(no H2 gas corrosion)

High pressure capability to meet various applications (up to 20 PSIG)

Optimized selection between wide flow turndown and high efficiency

Easy HMI design with local monitoring option

Rated Power: 75k~690kW above (100~900 HP above)

- Multiple cores operating at best efficiency point (BEP) with highly improved flow turndown ratio
- Operating at the optimal capacity based on real-time demand
- Second the system continuously despite the single core failure. No interference of inlet air flow and minimal downtime for maintenance
- Suilt-in backup system with an independent operation mode of each core

• • •

AIR-BEARING HIGH-SPEED TURBO BLOWER TNE PRODUCTS

Product	ATB
specifications	

	ATB	T	N	СТВ		H
		S2	S4		S2	S4
	W (mm)	460	699	W (mm)	482	647
	L (mm)	971	1170	L (mm)	975	1155
	H (mm)	845	1095	H (mm)	890	1155
	STB			МТВ	H	
S6	S8	S10	S12 S1	4	D2	D3 D4
830	1000	1000	1100 130	0 W (mm)	1300	1600 1800

W (mm) 830 1000 1000 1100 1300 W (mm) 1300 1600 L (mm) 1480 1750 1900 2000 L (mm) 1515 1990 1970 1580 1440 1480 1750 2000 H (mm) 1330 1610 1640 H (mm) 1800

*Inquire separately for D6 and D8

ATB/CTB

STB

Pressure Ratio	Prs. Ri ∆P kf	ise ^D a	MODEL & VOLUME FLOW RATE (M ³ /MIN)												MODEL & VOLUME FLOW RATE (M ³ /MIN)										
2.28	130.	0	0.76	1.68	2.47	3.47	4.6	5.7	6.8	8.2	10	11	14	18	21	26	36	45	56	66	74	92	114	134	155
2.18	120.	0	0.81	1.80	2.65	3.72	5.0	6.2	7.3	8.8	11	12	14	19	23	28	39	49	60	70	80	99	123	144	166
2.09	110.	0	0.88	1.95	2.86	4.02	5.3	6.6	7.8	9.5	12	13	16	20	24	30	42	53	65	76	86	107	132	155	179
1.99	100.	0	0.95	2.12	3.11	4.37	5.8	7.2	8.5	10.3	13	14	17	22	26	33	45	57	71	83	93	116	144	168	195
1.89	90.0)	1.04	2.32	3.41	4.79	6.4	7.9	9.3	11.3	14	16	19	24	29	36	50	63	78	91	102	127	158	185	213
1.79	80.0)	1.16	2.58	3.79	5.32	7.1	8.8	10.4	12.5	15	18	21	27	32	40	55	70	86	100	114	141	175	205	237
1.69	70.0)	1.30	2.90	4.26	5.98	8.0	9.9	11.7	14.1	17	20	23	30	36	45	62	78	97	113	128	159	197	230	266
1.59	60.0)	1.49	3.32	4.88	6.85	9.2	11.3	13.3	16.2	20	23	27	35	41	51	71	90	111	129	146	182	226	264	305
1.49	50.0)	1.75	3.89	5.72	8.04	10.8	13.3	15.7	19.0	23	27	31	41	49	60	84	105	130	152	172	213	265	310	358
1.39	40.0)	2.13	4.74	6.96	9.78	13.2	16.2	19.1	23.1	28	32	38	49	59	73	102	128	158	185	209	260	322	377	435
1.30	30.0	C	2.74	6.10	8.97	12.59	17.0	20.8	24.5	29.7	36	42	49	64	76	94	131	165	204	238	269	334	415	485	561
1.20	20.0)	3.92	8.71	12.81	17.98	24.4	29.7	35.0	42.4	51	59	70	91	109	134	187	235	291	340	384	477	592	693	801
RATE	D k	W	2	4	6	8	11	13	15	18	22	25	29	37	45	55	75	95	115	135	150	185	225	265	300
POWE	R F	ŀΡ	2.6	5.3	8.0	11	15	17	20	24	30	34	39	50	60	74	101	127	154	181	201	248	302	355	402
PAC	KAGE		5	50	5	S1		ę	52			ç	34			S6		S	В	St	0	5	612	S	4
INPUT VOL	TAGE	V					22	0~480)				380 -	- 480						380 ~	480				
FREQUE	NCY	Hz						50	~ 60											50~	60				
COO	LING							AIR	COOL	ED					AIR COOLED										
BEA	RING							AIR	BEARII	NG										AIR BE	ARING				

• • •

Air inlet filter specifications

1. Standard air inlet filter (Non-woven type)

	S2	S4	S6	S8	S10	S12	S14	D2	D3	D4
W1(mm)	330	400	400	460	780	860	1000	400	400	460
H1(mm)	400	550	550	780	1220	1350	1450	550	550	780
T1 (mm)	30	30	30	30	30	30	30	30	30	30
Qty(ea)	1	1	2	2	1	1	1	2	4	4

2. Optional Premium air inlet filter (HEPA type main filter+ pre-filter)

	S2	S4	S6	S8	S10	S12	S14	D2	D3	D4
W1 (mm)	325	395	405	470	790	870	1000	395	405	470
H1(mm)	410	560	550	780	1220	1350	1450	560	550	780
T1(mm)	30	30	30	30	30	30	30	30	30	30
T2(mm)	5	5	5	5	5	5	5	5	5	5
Qty(ea)	1	1	2	2	1	1	1	2	4	4

MTB

-										-	MODEL	& VOI	UME EI	OW BA	TE (M ³	/MIN)								
Pressure	Prs Rise											NUMBI	EROF	CORES										
Ratio			_	2						4					6					8				
2.28	130.0	20	27	35	42	52	72	91	112	84	104	144	182	224	126	156	217	273	337	168	207	289	363	449
2.18	120.0	21	29	38	45	56	77	97	120	90	111	155	195	241	135	167	232	292	361	180	223	310	390	482
2.09	110.0	23	31	41	49	60	84	105	130	97	120	167	210	260	146	180	251	316	390	195	240	334	421	520
1.99	100.0	25	34	44	53	65	91	114	141	106	131	182	229	283	159	196	273	343	424	212	261	364	458	565
1.89	90.0	27	37	48	58	72	100	126	155	116	143	199	251	310	174	215	299	377	465	232	287	399	502	620
1.79	80.0	30	41	54	64	79	111	139	172	129	159	221	278	344	193	238	332	418	516	257	318	442	557	688
1.69	70.0	34	47	60	72	89	124	157	193	145	179	249	313	387	217	268	373	470	580	290	357	497	626	773
1.59	60.0	39	53	69	83	102	142	179	221	166	205	285	359	443	249	307	427	538	664	332	409	570	717	886
1.49	50.0	46	63	81	97	120	167	210	260	195	240	334	421	520	292	360	501	631	780	389	480	669	842	1040
1.39	40.0	56	76	99	118	146	203	256	316	237	292	407	512	632	355	438	610	768	949	473	585	813	1024	1265
1.30	30.0	72	98	127	152	188	262	330	407	305	376	524	659	814	457	565	786	989	1221	610	753	1047	1318	1629
1.20	20.0	103	140	182	218	269	374	471	581	435	537	748	941	1163	653	806	1122	1412	1744	870	1075	1 4 9 6	1883	2326
RATE	D KW	44	58	74	90	110	150	190	230	180	220	300	380	460	270	330	450	570	690	360	440	600	760	920
POWE	R HP	59	78	99	121	148	201	255	308	241	295	402	510	617	362	443	603	764	925	483	590	805	1019	1234
PAC	KAGE		D2			D3		(C)4		Q3		G	24		H3		H	14		XЗ		×	(4
INPUT VOL	TAGE V											3	80 - 48	30										
FREQUE	NCY H	2											50 ~ 6	0										
COC	LING											Alf	R COOL	ED										
BEA	RING	AIR BEARING																						

*Inquire separately for D6 and D8

*Inquire separately for D6 and D8